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Abstract The dynamics of a growing tumor involving
mechanical remodeling of healthy tissue and vasculature is
neglected in most of the existing tumor models. This is due
to the lack of efficient computational framework allowing
for simulation of mechanical interactions. Meanwhile, just
these interactions trigger critical changes in tumor growth
dynamics and are responsible for its volumetric and
directional progression. We describe here a novel 3-D
model of tumor growth, which combines particle dynamics
with cellular automata concept. The particles represent both
tissue cells and fragments of the vascular network. They
interact with their closest neighbors via semi-harmonic
central forces simulating mechanical resistance of the cell
walls. The particle dynamics is governed by both the
Newtonian laws of motion and the cellular automata rules.
These rules can represent cell life-cycle and other biological
interactions involving smaller spatio-temporal scales. We

show that our complex automata, particle based model can
reproduce realistic 3-D dynamics of the entire system
consisting of the tumor, normal tissue cells, blood vessels
and blood flow. It can explain phenomena such as the
inward cell motion in avascular tumor, stabilization of
tumor growth by the external pressure, tumor vasculariza-
tion due to the process of angiogenesis, trapping of healthy
cells by invading tumor, and influence of external (bound-
ary) conditions on the direction of tumor progression. We
conclude that the particle model can serve as a general
framework for designing advanced multiscale models of
tumor dynamics and it is very competitive to the modeling
approaches presented before.

Keywords Angiogenesis . Complex automata . Computer
simulation . Discrete particle model . Tumor progression

Introduction

Despite the huge amount of resources that have been
devoted to cancer research, according to the National
Center for Health Statistics (http://www.cdc.gov/nchs/
FASTATS/lcod.htm), cancer is the second killer (after heart
disease) in the US. The set of diseases, which are
categorized as cancer, are characterized by serious dis-
ruptions in the control mechanisms regulating growth and
homeostasis in normal tissue. Up to now many aspects of
cancer remain obscure for experimentalists and clinicians,
and many of the currently used therapeutic strategies are
not entirely effective.

A better understanding of the dynamics of tumor
formation and its growth are expected from computer
models and simulations. The modeling could improve the
overall clinical outcome by predicting the results of specific
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forms of treatment administered at specific time points.
Moreover, it might help to optimize the existing therapeutic
procedures, design new ones, or even provide post-
treatment predictions [1–4]. The degree of angiogenesis in
human tumors varies widely and may be very low in some
types of tumors. Therefore, tumors with a low level of
angiogenesis may not be benefited when treated with
antiangiogenic agents [2, 5]. Computer modeling of tumor
progression involving its both avascular and vascular
phases, could allow for answering the question if the
angiogenic therapy is justified or not in these uncertain
cases.

Nevertheless, we should be aware of the computer
modeling limitations from which the most important are
as follows:

1. The replication of living organism in silico is a
computationally irreducible problem due to impassable
barriers of the theory of computation, the theory of
chaos and technological limits. Many aspects of tumor
development can be investigated on a case-by-case
basis.

2. Tumor evolution is a complex process involving
processes occurring over a variety of time and length
scales: from the DNA level and intracellular processes,
through tumor vascularization and metastasis, to the
holistic, mental and environmental factors. Up to now,
no significant progress has been made in constructing
consistent and rigorous mathematical formalism and
computational methodologies, which can exploit effi-
ciently current computational resources and program-
ming paradigms in modeling truly multiscale
phenomena.

3. Even well known physical processes occurring in the
real tissue, such as diffusion and blood flow, which can
be described using partial differential equations (PDEs),
are very difficult to simulate. This is due to the intricate
boundary conditions imposed by heterogeneous envi-
ronment (e.g., extracellular matrix (ECM) structure,
blood vessel structure, blood rheology etc.), incomplete
parameter space, and non-linear reaction terms.

Although global modeling of cancer development is
impossible, a more selective approach focusing on basic
carcinogenic processes can allow for substantial reduction of
both many methodological problems and computational
resources. The approximate theories and numerical models
can be used then to detect more precisely the cancer “weak
points” - the future targets of anticancer therapeutic strategies.

We focus our attention on the process of tumor growth
from avascular phase to angiogenic phase, i.e., the process
of the blood vessel formation from a pre-existing vascula-
ture. Judah Folkman published in 1971 the theory [6, 7]
that angiogenesis is a principal process in tumor progres-

sion [9, 10]. Vascularized tumor invades the surrounding
tissue, blood and lymphatic vascular systems and the
possibility of the cancer spreading (metastasis) increases
dramatically. Antiangiogenic targeting of the neovascula-
ture within tumors is currently considered as one of the
most promising strategies in the search for novel antineo-
plastic therapies [2, 6, 11]. Because molecular phenotype of
immature, angiogenic blood vessels is distinctly different
from that of resting blood vessels, tumor blood vessels can
be selectively targeted without affecting the normal organ
vasculature. The process of angiogenic signaling and
formation of blood vessels can be disrupted or slowed
down with small molecules. In addition to treatments
directed to specific target, non specific agents can be used
to eliminate endothelial cells thus inhibiting angiogenesis.
This involves numerous expensive and demanding inves-
tigations both of hundreds of factors inhibiting angiogen-
esis and antiangiogenic chemical species which can be
considered in drug design process. To cut expenses, the
predictive power of mathematical modeling and computer
simulation has to be employed. As shown in [12], in silico
experiments can play the role of angiogenesis assays.

In the following section we shortly describe the main
processes, phenomena and growth factors contributing
cancerogenesis. Then we present the most advanced models
of tumor growth including continuum, cellular automata
and hybrid models. We focus on such modeling aspects as
cell cycle, tumor growth factors, angiogenesis, blood flow,
and vessel remodeling. Next, we describe the model of
complex automata driven by particle dynamics and we
discuss its assumptions, limitations, and simulation con-
ditions. The following section collects the results from
simulation of avascular and vascular phases of tumor
growth. We scrutinize the role of mechanical interactions
between swelling tumor, normal tissue, and expanding
vascular network on tumor dynamics. We explain the
influence of mechanical interactions on compartmentaliza-
tion of the avascular tumor into external shell of well
oxygenated cells, deeper layer of cells in hypoxia and
necrotic interior. We study the effect of mechanical
remodeling on tumor progression in vascular phase and
on differentiation of microvascular density in various
regions of tumor. The role of processes involved in
branching and vessels maturation, such as (Dll4) - Noch1
signaling [13, 14], is also analyzed. The results are
confronted with experimental studies. For simplicity we
do not discuss a parallel to blood vessel, lymph vessel
network which assist normal tissue and tumor with lymph
outflow and decrease in extracellular matrix pressures. This
network is a critical component of tumor metastases
pathway. However, it is only minimally involved in
dynamics of tumor growth. In the last section we present
the conclusions.
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Simplistic model of tumor growth

Generally, we can recognize a few principal phases of
tumor progression, representing various spatio-temporal
scales [1, 15–17].

1. Subcellular scale - involves genetic changes, distortion
in the cell cycle and loss of apoptosis, absorption of
vital nutrients.

2. Cellular scale - comprises interaction at the cellular
level with immune cells and other tumor cells,
activation and inhibition of the immune system. The
cellular scale refers to the main activities of the cells:
activation and proliferation of tumor cells.

3. Avascular tumor scale - includes condensation of tumor
cells into cluster, macroscopic diffusion of TAF (tumor
angiogenic factors) and oxygen.

4. Angiogenic phase - involves angiogenesis, sprouting,
anastomosis, angiogenesis termination.

5. Vascular phase - includes blood flow, remodeling
(vessel dilation and regression, mechanical reshaping
of tumor and vessels), vessel maturation.

6. Detachment of metastases and invasion.

In Fig. 1 we present the scale separation map (SSM) for
this simplified model of tumor growth. The microscopic
processes such as cell motility and cell cycle are discrete.
The macroscopic scale refers to phenomena which are

typical for continuum systems such as diffusion (of oxygen
and TAF), overall tumor condensation and blood flow. In
macroscopic models, microscopic phases can be approxi-
mated by coarse grained models as long as the methodol-
ogy of multi-scale simulation and adequate computational
resources are lacking. The arrows in Fig. 1 show the
relationships between these processes. The particle model
presented in the following sections refers only to the
processes shaded in blue.

Four overlapping phases of tumor growth are usually
identified: the avascular phase, the angiogenic phase, the
vascular phase, and vessels and tumor remodeling. These
phases go with physical processes such as nutrients and
TAF diffusion, blood flow and mechanical remodeling
caused by interaction between growing tumor, vessels and
the normal tissue.

Avascular tumor

The proliferating tumor cells start to condensate into a
compact cluster and interact with the external environment.
Solid tumor, which is smaller than 1–2 mm in diameter
(about 106–107 cells [11]), removes wastes and acquires
nutrients and oxygen through passive diffusion. The
oxygen (and nutrients) is supplied to the tumor nucleus by
the closest, mature blood vessels. It percolates through the
surface of the solid tumor and diffuses inside its mass. Due

Fig. 1 The scale separation map of all the main processes considered in modeling of tumor-induced angiogenesis. The processes controlled in our
model are colored blue
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to differences in concentration of oxygen, the tumor cluster
consists of the outer region with proliferating cells, an
intermediate region of cells in hypoxia and the necrotic core
of dead tumor cells. Most solid tumors, even those 1–3 mm
in diameter, exhibit hypoxic fractions that may range from
10 to 30% [11, 18, 19]. The avascular tumor is in dynamic
equilibrium. Its critical mass has been reached, and
diffusion based transport is no longer efficient for
proliferation-dominated growth. Tumor size is regulated
by proliferation speed, oxygen penetration depth and the
external pressure [19].

Angiogenesis

As shown in Fig. 2, the tumor-induced angiogenesis is
initiated by tumor cells with the shortage of oxygen supply.
The cells trigger the release of tumor angiogenic factors
(TAF) [7, 18, 20, 21, 34]. Among many tumor growth
factors, vascular endothelial growth factor (VEGF) has
been identified as one of the key components [7]. VEGF
cytokines, released from the tumor cells in hypoxia, diffuse
through the extracellular matrix (ECM) - the biological
material between tumor and existing vasculature - and
produces a chemical gradient. Once VEGF has reached a
vessel, it binds to the receptors located on endothelial cells
lining blood vessel walls. This stimulates several enzymes
(e.g., metalloproteinases) to degrade of basement mem-
brane and sets off a cascade of events which triggers the
outgrowth of new vessel sprouts [9, 10, 20]. Endothelial tip
cells proliferate and migrate through the ECM. The tip cells
follow along the VEGF gradient toward regions of higher

concentration (chemotaxis) [21]. As shown in [20, 21], in
addition to the soluble isoform of VEGF, the presence of
other VEGF isoforms significantly influence morphology
of capillary network formation.

After initial sprouts have extended into the ECM for
some distance, repeated branching of the tips can be
observed. This causes numerous tip-to-sprout transitions.
The newly formed vessels may form loops in a process
called anastomosis. Along with anastomosis, the formation
of lumen establishes a network that allows the blood
circulation. The blood starts to circulate in the parts of
network with nonzero blood pressure gradient.

There exist many other important factors which both
promote and inhibit the process of angiogenesis (e.g., see
[9, 10, 15, 20, 21]). Some of them will be discussed in the
following sections.

Vascularization

Tumor vascularization is a complex process of vascular
network development. It is initiated by the process of
angiogenesis and begins with the formation of a primary
capillary plexus. Once the sprouts approach the tumor, their
branching dramatically increases until the tumor is eventu-
ally penetrated by vascular network. Due to better oxygen-
ation, the concentration of TAF decreases also inside the
tumor. However, the newly formed vessels are subsequently
remodeled by the growing tumor and pushed away
producing regions of lesser concentration of oxygen, which
initiates TAF production. This stimulates simultaneous
growth in size of both tumor and its vasculature [2, 5, 19].

Fig. 2 The scheme of tumor-
induced angiogenesis
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Tumor vessels can be segregated into three categories
[5].

1. Immature - highly proliferative, nonperfused endothe-
lial cell (EC) sprouts emanating from functional
vessels.

2. Intermediate - small, perfused vessels which lack
support from mural, smooth muscle cells, and peri-
cytes.

3. Mature - larger vessels, which have recruited pericytes,
and smooth muscle cells with quiescent ECs and few
associated sprouts.

Tumor vessels develop through these stages, beginning
with treads of endothelial cells sprouting from functional
blood vessels.

Remodeling

The process of tumor vascularization never becomes
quiescent because the primitive vessels are continuously
remodeled by dynamically evolving angiogenic factors,
mechanical forces exerted by growing tumor, blood flow,
and intraluminal thrombosis.

Local modifiers of vessel reshapining include growth
factors, pericytes, extracellular matrix (ECM), and neigh-
boring cells, such as smooth muscle cells, fibroblasts and
macrophages. For example, inhibition of VEGF results in
significant increase in EC apoptosis [22] contributing to
fast regression of newly formed vessel. The inadequate
pericyte coverage is also the reason of vessel decay [5, 22,
23]. As shown in [24, 25], the ECM density and its
structure modify the direction of growing vessels. The
results shown in [25] confirm different degrees of tumor
perfusion or vascularization, depending on the ECM
heterogeneity. The vessel wall is not always formed by a
homogenous layer of endothelial cells. Instead, it may be
lined with neighboring cancer cells and endothelial cells
[20] changing vessel functionality.

Global vessel modifiers are: the blood flow and
mechanical remodeling involved by the interactions among
growing tumor tissue, normal tissue and vasculature. High
pressure and shear forces of blood exerted on vessel wall
cause its perfusion and dilation. Both the dilated vessels
and EC treads without circulating blood collapse. Vessel
collapsing in the interior of the tumor initiates percolation
process which is driven toward criticality - the percolation
threshold - using a mechanism of vessel stabilization by
increased blood flow in the remaining vessels [19]. Blood
flow is also the source of both shear stress-dependent and
pressure-dependent vessels reshaping [26]. However, the
most robust remodeling factor is the mechanical interaction
between the tumor cells, normal tissue cells and vascula-
ture. The high pressure exerted on the vessel walls can

make them collapse. The mechanical forces may change
also the location of vessels, destabilizing the tumor growth
and changing its direction [4, 19].

Computer models of tumor growth

Mathematical modeling of angiogenesis extends back a
number of years [1, 3, 4, 12, 15, 16, 27–29]. The modeling
concentrates on key events such as the response of
endothelial cells to tumor angiogenic factors secreted by a
solid tumor, endothelial cell proliferation, endothelial cell
interactions with extracellular matrix macromolecules,
capillary sprout branching, blood flow and vessel matura-
tion. The substantial difference with respect to the physical
models is that the microscopic state of the cells is defined
not only by mechanical variables, such as position, velocity,
pressure, but also by internal biological microscopic
phenomena reflecting activities of the cells.

A large bibliography about mathematical models of
tumor growth driven by the process of angiogenesis can be
found in two books edited by Adam and Bellomo [1] and
by Preziosi [16] and in more recent overview by Mantzaris
et al. [15]. Three major categories of models of tumor-
induced angiogenesis can be recognize: (a) continuum
models that treat the EC and chemical species densities as
continuous variables that evolve according to a reaction-
diffusion system, (b) mechanochemical models that
incorporate some of the mechanical effects of EC-ECM
interactions (c) discrete, cellular automata or agent based
models in which cells are treated as units which grow
and divide according to prescribed rules (d) hybrid
multiscale models involving processes from micro-
to-macroscale.

Continuum models only incorporate the chemical inter-
actions between the EC and the environment. Among the
continuum models, Greenspan proposed some of the
earliest mathematical description of tumor growth [30].
His models of avascular tumor growth were formulated as
moving boundary problems, in which the solid tumor grows
in suspension. The continuum models do not allow for
cellular heterogeneity within the tumor mass, and the
treatment of the mechanical properties of the tissue is
rather simplistic. Moreover, they neglect mechanical inter-
actions between vasculature and its environment. Some
types of mechanical interactions were incorporated into
mechanochemical models introduced in [30–32]. However,
despite continuum models can provide significant insight
into the relative role that different process play in the
formation of vascular network; they cannot predict its
structure. Within these models, it is not possible to capture
such important events as repeated sprout branching and the
overall dendritic structure of the network.
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In contrast to continuum models, many types of discrete
techniques have been presented in the literature to explain
and describe the branching morphology of the vascular
networks. There are, for example, percolation models [33],
Eden models [18, 19], random walk and diffusion limited
aggregation (DLA) models [24], cell based models [34],
lattice models and cellular automata [35–37]. Unlike in the
continuum models, discrete models can follow individual
cells and can reveal more details about cell dynamics and
its interaction with the tissue.

Discrete models are usually hybridized with continuum
approaches in which molecular species are represented by
their concentration while migrating EC tip cells are
mimicked by particles [12, 21, 25]. The Stokes-
Lauffenburger [21] model is one of the oldest hybrid
models simulating two-dimensional spatial distribution of
sprouts. It uses s classic Folkman simulation conditions [6,
7]. The domain is a square (box) of surface S (volume V).
The tumor is located at the top center of the domain and the
capillary at the bottom. All of the boundaries have no flux
conditions for cells and TAF. The evolution of molecular
species is governed by reaction-diffusion equations that are
discretized on grid. The particle, which dynamics on the
TAF concentration field is described by a stochastic
differential equation, simulates the migration of EC tip
cells. This approach is the source of many other hybrid
models (e.g., [12, 17, 18, 24, 25, 35, 37, 38]) which differ
in:

1. methodology of simulation of the process of vascular-
ization and tumor growth (stochastic, deterministic,
cellular automata, lattice-gas, DLA etc.),

2. modeling accuracy and its depth - defined by the
number of factors and subprocesses included in the
model,

3. assumptions about geometrical properties of the simu-
lation such as: dimensionality (2-D, 3-D), discretization
of space and time (on-grid, gridless), structure of
vascular network (rigid, structured, unstructured) etc.

One of the most popular paradigm used for modeling
tumor growth are cellular automata (CA) (see the critical
overview [36]). Cellular automata deal with the dynamics
of discrete elements populating the nodes of structural
(mostly rectangular) grid. The elements take their state from
a discrete (finite or infinite) space of states and evolve in
discrete space and time. The dynamics of the elements is
defined in terms of local, either deterministic or probabilis-
tic, rules. Many models incorporate modifications to the
classical definition of a CA hybridizing it, like in the
Stokes-Lauffenburger model [21], with continuum fields of
diffusive substances, such as nutrients or signaling sub-
stances. CA models, however, typically do not address the
important mechanical interactions between the tumor and

healthy tissue. Complex automata (CxA) are a generaliza-
tion of cellular automata and represent a scalable hierarchi-
cal aggregation of CA and agent-based models [39]. The
components represent a sub-system operating on its typical
spatial and temporal scales. Globally, CxA can behave
either as the classical CA nodes on a structural lattice or as
interacting particles whose dynamics is described by the
Newtonian laws of motion or stochastic laws. These CxA
can be an interesting framework for the development of the
multiple scale models.

The accuracy of the computational model is defined by
its correspondence to the multiple processes and multiple
scales involved in tumor growth (see Fig. 1). Because of the
complexity of the entire process, many models to date focus
on single key sub-processes, disregarding their interactions
with others. Many attempts assume either a static tumor and
concentrate on dynamic vascularization in the absence of
tumor growth [23–26, 29] or a static network topology [32,
35]. Some of them use dynamic network with blood
flowing, neglecting its interaction with concentration fields
and tissue components (e.g., [26]).

Multiscale and multi-physics models represent the most
advanced simulation methodologies. Multiscale models
extend the moving boundary approach to incorporate
cellular heterogeneity, intercellular phenomena and the
use of more complex mechanical laws to describe the
response of the tissue to external forces. Advanced
multiscale models of tumor progression are presented in
papers by Bellamo et al. [1] and by Alacorn et al. [17].

The principal weaknesses of these impressive multiscale
models are rigid geometric constrains which disable
realistic visualization and are the sources of many serious
artifacts. The reduction of one spatial dimension belongs to
the most drastic simplifications. The 2-D angiogenesis
models can adequately approximate only tumors develop-
ing on a flat surface. However, even for this case, 2-D
approaches result in unrealistic and excessive tumor
compartmentalization onto many regions separated by
vessels. This compartmentalization may produce the artifact
such as the excessive increase of the number of cells in
hypoxia in separated regions and, consequently, the
increase of microvascular density (MVD). Other 2-D
artifact resulting in excessive MVD increase is illustrated
in Fig. 3. The 2-D nucleus pushes the vascularization away
from its interior, while for 3-D case the tumor cells grow
between the vessels.

Other constrains like rigid structure of vascular network
(e.g., in [17, 18]), considerably limit the role of vessel
remodeling in tumor progression. In [17], for example, the
process of angiogenesis is replaced by artificial dilation of
blood capillaries, without changes in vessel structure.
Moreover, spatial anisotropy imposed by structural CA
lattices (rectangular, hexagonal) falsifies both the structural

1522 J Mol Model (2009) 15:1517–1539



characteristic of vascular network and macroscopic behav-
ior of the growing tumor.

Disregarding all microscopic and mesoscopic biological
and biophysical processes, in macroscopic scales tumor
growth is a purely mechanical phenomenon. Mechanical
interactions influences most the structure of vasculature,
blood flow, tumor shape and decides about its directional
progression. Due to the lack of adequate computational
framework any of existing computational paradigms is able
to reproduce this basic process. In our opinion, this is the
principle obstacle in creation of a truly multiscale model of
tumor growth, which not only mimics all the chemical and
biochemical inter and intracellular processes but allows for
realistic tumor progression in macroscopic scale as well.

Complex automata model driven by particle dynamics

Our complex automata (CxA) model of angiogenesis
follows the general principles of particle model described
in [40–43]. The system, representing the fragment of tissue,
is made of a set ΛN={Oi: O(xi,vi,ai), i=1,…,N} of particles
(agents, in terms of CxA terminology [44]), where i is the
particle index and N is the number of particles. Each
particle is defined by three vectors: position xi, velocity vi,
and attributes ai.

The attribute vector a=(tp, kd, sz, tcell, thp, cTAF, cO2,
cother, p), where:

tp is particle type: ∈{tumor cell (TC), normal cell (NC),
endothelial cell (EC)}

kd cell life cycle state: ∈ {newly formed, mature, in
hypoxia, after hypoxia, apoptosis, necrosis}

sz cell size
tcell cell age (life clock)
thp hypoxia time
ck concentrations of k=TAF, O2 and other factors
p total pressure exerted on particle i from its closest

neighbors and the walls of the computational box.

In fine-grained models a particle mimics a single cell or
components of ECM. Nevertheless, this assumption becomes
very computationally demanding for modeling tumors of
realistic sizes. The largest molecular dynamics (MD) simula-
tion involved 2×1010 particles [45]. However, the number of
timestep of this simulation was not so impressive (only 50–
100 timesteps). These computational restrictions impose
current limits on spatio-temporal scales simulated by our
particle model. A tumor of 1 mm in diameter consists at least
of a million cells [11]. To simulate the proliferation of a
tumor of this size, located in a fragment of tissue of 8 mm3 in
volume in 3-D, one needs at least 1.6×107 particles simulated
in 105 timesteps. This requires approximately the same
computational resources as the largest MD simulations.

However, particle method can also be used in its coarse-
grained form (as in [42]). In particle models, such as
dissipative particle dynamics (DPD) [46], fluid particle
dynamics (FPM) [47] or smoothed particle dynamics(SPH)
[48], the particle can represent the cluster of atoms or
molecules. The clusters interact with each other via a
central potential such as in the pure MD method. This time,
however, the interaction is different than for MD. It usually
consists of conservative (repulsive), dissipative and Brow-
nian parts [46, 47]. In a similar way, we can assume that in
our coarse-grained model a particle can represent a
fragment of tissue with additional attributes, such as
concentration of normal, tumor, EC cells and extracellular
matrix ingredients. By defining cluster size (the model
granulation), this approach allows for simulating tumor
growth in various spatio-temporal resolutions.

Unlike in purely fine-grained particle model, where all
cells and tissue ingredients are represented by particles, in
our model a particle represents a single tumor or normal
cell in ECM envelope. Thus, some ECM properties, such as
density, can be reflected in parameters of cell-cell interac-
tion model.

In a truly fine-grained model, the vessel walls had to be
made of small and thin endothelial cells. Moreover,

Fig. 3 Two snapshots from
simulation of avascular tumor
growing in two (2-D) and three
(3-D) dimensions in similar
conditions. The particle based
CxA model was employed. In
two dimensions the vasculature
is unrealistically stretched and
pushed away from the interior of
growing nucleus while in 3-D
the tumor is rooted by the
vessels
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sprouting and bifurcation of vessel tip is a very complex
biological process involving tens of cells, many growth
factors, chemical species and ECM structure [9, 15, 21, 22].
For the sake of simplicity we assume here that the vessel is
constructed of tube-like “particles” - EC-tubes - each made
of many endothelial cells. As shown in Fig. 4, we define
three types of interactions: sphere-sphere (A), sphere-tube
(B), and tub-tube (C).

The forces between cells should mimic both mechanical
repulsion from squashed cells and attraction due to cell
adhesiveness [17] and depletion interactions [43, 49]. The
mechanical repulsion can be approximated by Hook law.
We assume, for simplicity, that the attractive tail has similar
character but it is less rigid than the repulsive part (see
Fig. 4D). The attractive forces are short-ranged. This
heuristic potential Ω(dij) (illustrated in Fig. 4D) we define
as follows:

Ω dij
� � ¼ a1d

2
ij; for dij < dcut;where a ¼ a1 for dij < 0

a2 for dij � 0
and a1 << a2

(
a2d

2
cut; for dij � dcut

8>><
>>: ð1Þ

and

dij ¼ ~rij
�� ��� ri þ rj

� � ð2Þ
where dij is the distance between cell walls. In more
advanced models, tumor and normal cell interactions can be
represented employing different interaction parameters a1,2
due to different mechanical properties: elasticity and
adherence of normal and tumor cells [15, 17, 39]. The
interactions between spherical cells and EC-tubes have
similar character. We assume that despite the elongated

shape of the tube the interactions are central. The tube-
tube interactions are also central. This assumption is
justified because torque will not produce remarkable
effects for slow and highly dissipative tumor dynamics.
Moreover, by neglecting angular momentum, we can
reduce computational load required for numerical integra-
tion of equations of motion. Only the tips of interacting
tubes can fuse them together. Consequently, the chain of
tubes forms blood vessels such as in Fig. 4C and in
Fig. 8.

Fig. 4 The types of particles
and interactions used in the
particle based model

1524 J Mol Model (2009) 15:1517–1539



The particle dynamics is governed by the Newtonian
laws:

mi
dVi

dt
¼ �a � rΩ dij

� �� l � Vi
dri
dt

¼ Vi

rij ¼ ri � rj
� � � ri � rj

� �T ð3Þ

where mi, ri and Vi are the mass, position and velocity of
particle i, respectively, while λ is a friction coefficient. This
set of equations of motion is solved numerically by using
direct leap-frog scheme (see overview [43, 49]). The total
forces acting on particles are calculated by using linked-
cells method combined with the Verlet algorithm (see e.g.,
in [49, 50]).

The particle system representing a growing tumor is very
unstable. The number of cells increases and/or fluctuates
because they can replicate or disappear. During the life-
cycle, the normal and tumor cells change their states from
new to apoptotic (or necrotic) according to their individual
clock and oxygen concentration. The cells of certain age
and size and being well oxygenated undergo the process of
“mitosis”. They split into two daughter cells. The new
formed cell is in new state and its diameter is equal to dMIN.
The diameter increases with time up to dMAX, proportionally
to the oxygen concentration. The minimum and maximum
particle diameters depend on the model granularity. Finally,
after time TN, the particles undergo apoptosis, i.e.,
programmed cell death. Consequently, dead cells are
removed from the system. For oxygen concentration
smaller than a given threshold, the cell (which is not in
the necrotic state) changes its state to hypoxia. Such cells
become the source of TAF. The cells, which are in hypoxia
for a period of time longer than a given threshold, die and
become necrotic. We assume that in the beginning, the
diameter of a necrotic cell decreases twice and, after some
time, the cell is removed. This is contrary to apoptotic cells,
which are rapidly digested by their neighbors or by
macrophages. The diagram of the cell cycle is shown
below (Fig. 5). As was mention before, the duration of
phases of the cell cycle for normal and tumor cells differs
considerably. Also the behavior of tumor and normal cell is
different. For example, the proliferation rate of tumor cells,
which were in hypoxia state, can change. As shown in

Fig. 6, the cells being a certain period of time in hypoxia
proliferate faster than those evolving in normal conditions.
In Fig. 7 we present two snapshots from simulation of a
growing cell cluster.

The cell cycle for EC-tubes is different than for spherical
cells. In fact, EC-tubes are clusters of endothelial cells. The
tubes grow both in length and in diameter. The vessels
collapse due to a combination of severely reduced blood
flow, the lack of VEGF, dilation, perfusion and solid stress
exerted by the tumor. However, because the EC-tube is a
cluster of EC cells, its division onto two adjoined tubes
does not represent the process of mitosis but is a
computational metaphor of vessel growth. Unlike, normal
and tumor cells, the tubes can appear as tips of newly
created capillaries sprouting from existing vessels. The new
sprout is formed when the TAF concentration exceeds a
given threshold. Then the “vessel particle” undergoes the
process of “mitosis” directed to the local gradient of TAF
concentration. The haptotaxis involving fibronectin [12, 15]
is not included yet in the model. In Fig. 8 we show two
snapshots from simulation of spontaneously growing tube
cluster.

The cells interact with each other not only by means of
mechanical forces. As shown in [17], under certain circum-
stances, cancer cells can modify their environment. Partic-
ularly, they are able to increase local acidity. Because tumor
cells show greater resistance to acid concentration than the
normal cells, they can eliminate normal cells from tumor
cells neighborhood by increasing acidity. In our model,
totalistic cellular automata rules are used to simulate
competition between tissue and tumor cells. The decisions
about survival or death of neighboring healthy cells will be
taken comparing the intracellular concentration of acid to a
critical threshold.

The transport of bloodborn oxygen and TAF into the
tissue is modeled by means of reaction-diffusion equations.
The distribution of hematocrit is the source of oxygen,
while the distribution of tumor cells in hypoxia is the
source of TAF. On the other hand, the distribution of cells
gives us the spatially distributed sink of both oxygen and
TAF. We assume that the cells of any type consume oxygen
and the rate of oxygen consumption depends on both cell
type and its current state [51]. We assume additionally that
only EC-tubes absorb TAF. TAF is washed out from the
system due to blood flow. Of course, one could employ
more detailed models involving VEGFb absorption in ECM
[25], however, at the expense of considerable increase of
computational load.

Diffusion of oxygen and TAF is many orders of
magnitude faster than the process of tumor growth. On
the other hand, the blood circulation is slower than
diffusion but still faster than the mitosis cycle (see
Fig. 1). Therefore, we can assume that both the concen-Fig. 5 The simplified diagram of cell fate
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trations (of oxygen and TAF) and hydrodynamic quantities
are in steady state in the time scale defined by the timestep
used for numerical integration of equations of motion
(Eq. 3). This allows for employing fast approximation
procedures for both calculation of blood flow rates in
capillaries and solving the reaction-diffusion equation.

We compute the blood flow rates employing Kirchoff’s
laws (same as in [17]). We assume that only vessels with
circulating blood (anastomosing vessels) are the sources of
oxygen. Moreover, both the oxygen and hematocrit
concentrations in blood do not change along capillaries
and the oxygen supply is proportional to the blood flow
rate.

To calculate the concentrations of oxygen and TAF
we solve the reaction-diffusion equations numerically
by using approximation theory. One can estimate a
function f at position r by using smoothing kernels W as
follows:

f rð Þ ¼
Xn
j¼1

mj
fj
rj
W r� rj; h
� � ð4Þ

where mj is the mass, rj is the position, ρj is the density
and fj is the quantity f for neighbor particle j, respectively.
Here, n is the number of neighboring particles within cut
of radius h (|r − rj| ≤ h). When r=ri, f(r) is denoted by fi.
The smoothing kernel approximates a local neighborhood

r within distance h. Thus, we can estimate the density ρi
for a particle i at location ri by:

ri ¼
Xn
j¼1

mjW ri � rj; h
� � ð5Þ

where j is the index of the neighboring particle. The
kernel should be smooth, symmetric and satisfy the
following equation:Z
Ω

W r; hð Þdr ¼ 1: ð6Þ

We used 3D poly6 kernel proposed by Muller et al. [52].

Wpoly6 r; hð Þ ¼ 315

64ph9
h2 � rj j2
� �3

rj j � h

0 otherwise

8<
: ð7Þ

We selected this kernel due to its simplicity. As shown in
[52], better kernels can be used, however, at the cost of
computational efficiency. The Laplacian can be approxi-
mated then:

Δfi ¼
Xn
j¼1

mj

rj
fj�ΔW ri � rj; h

� �
: ð8Þ

Substituting Laplacian in the reaction-diffusion equation
by Eq. (8) we got the following expression for concen-

Fig. 7 Two snapshots from
simulation of a growing spheri-
cal particle cluster due to mitosis
of cells

Fig. 6 The diagrams illustrating speed of growth of mesothelioma cell line before (control) and after hypoxia (0, 24 and 48 hours)
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trations ci
K of K={oxygen, TAF} in particle i (χK - reaction

factor). When K=oxygen, then I=TAF and vice versa.

cKi ¼

cIi c
I
i

D � Pn
j¼1;i 6¼j

mj

rj
cKi �ΔW ri � rj; h

� � !

mi
ri
ΔW 0; hð Þ � cKi

D

� � ð9Þ

By solving this equation iteratively in each time-step of
Newtonian equation integration, we obtained the approxi-
mate concentration of TAF and oxygen in each particle
location.

The particles are confined in the cubical computational
box of volume V. Because the average kinetic energy in the
system is negligible small, from the virial theorem we
obtain that:

P � 1

3V
�
XN
i< j

Fij � rij: ð10Þ

The internal pressure increases due to increasing number
of particles (cells). The increase of box volume V
compensates the pressure increase above a given threshold.

In Fig. 9 we show basic procedures of our CxA particle
model, which include the model initialization phase, i.e.,
definition of initial and boundary conditions, and its
evolution driven by the following phenomena, which are
modeled explicitly:

a. Newtonian dynamics of interacting cells,

b. diffusion of oxygen and TAF,
c. cellular life cycle modeled by CxA rules,
d. vessels sprouting and growth,
e. vessels remodeling due to flow and maturation.

In the following section, we describe results from
modeling of the tumor proliferation in both avascular and
vascular phases by using the particle model described
above.

Results of modeling

Assumptions and simulation parameters

In this paper we do not investigate a growth pattern of a
specific cancer histology. We focus our attention on the
functionality and correctness of our model as a metaphor of
tumor growth. Below we discuss the parameters and
shortcomings we employ in our model.

The spatial scales we used in the particle model are
defined by the cell diameter, the size of computational box
and microvascular density (MVD). We have assumed that
the tumor cell (TC) diameter is 30 μm. It is larger than in
typical models (e.g., in [17–19]) (10 μm) but it is smaller
than V-79 cell described in [7]. This is a rather technical
shortcoming to decrease the computational load. The tumor
of about 1 mm in diameter would consists then of 5×104

Fig. 8 The snapshots from simulation of growth of tube particle cluster due to mitosis
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cells instead of millions. The particles (cells) are confined
in the computational box of size 1.5 mm×1.5 mm×1.5 mm
(or 2 mm×2 mm×2 mm for the largest simulations). Total
number of cells in the box is 105 of order. We have
assumed that if the total pressure exceeds a given threshold,
the stress is dissipated and the pressure in the box stabilizes.
In order to keep it constant, those cells which are close to
the box walls and which are the most suppressed are
removed from the system. The initial state of the particle
system at t=0 represents a regularly vascularized region of
a given microvascular density MVD with a small tumor in

the center (see Fig. 11). Vessels are arranged in a regular
grid with a lattice constant a=100 μm. This yields MVD=
100 vessels per mm2 in 3-D. As shown in Fig. 10, this
structure reflects well real oxygenation of modeled tissue
fragment.

We have chosen the timestep of simulation assuming
typical time scales of cell life cycle and tumor progression
rates such as division time, average cell life time in
hypoxia, doubling time of tumor volume (see Table 1). In
Eden model described in [18, 19] Δt is set to 1 h. Due to
cells motion driven by cells proliferation and their death,

Fig. 9 The main procedures of
the model
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the time-step for numerical integration of Eq. (3) in the
particle model has to be smaller. On the other hand, because
of high dissipation rate in the equations of motion
(sufficiently large friction λ in Eq. (3)) the time-step has
not to be so rigorously defined as for other particle
methods, e.g., such as in molecular dynamics. On the base
of our experience we assumed that in our simulations Δt=
0.25 h.

Functional vessels, i.e., the vessels with flowing blood,
are sources of oxygen while the cells are spatially
distributed sinks of oxygen. For computational tractability
we assumed a fixed O2 secretion rate along the vessel with
a given flow intensity. This assumption overestimates the
O2 concentration in regions with high MVD, but this does
not alter the model outcome significantly [18, 19]. We solve
diffusion equation assuming that the diffusion coefficient is
DO2=1.75×10

5 cm2/s [51, 53]. The resulting O2 concen-
tration profile is fit to experimental data from Fig. 10.
Given this initial configurations, we use Kirchoff’s laws to
calculate the flow intensities in newly formed anastomoses
and remodeled vessels. This then provides us with initial
conditions for updating the O2 concentration profiles in the
following simulation steps. As shown in Table 1, maximal
survival time in hypoxia are considerably lower for normal
than for tumor cells, moreover, tumor cells can survive in
much lower O2 concentration [39, 54]. The metabolic
parameters and thresholds for cells in hypoxia are partly
copied from [39, 51, 55] and from experimental results
obtained by one of the authors of this paper (A.Z. Dudek).
Diffusion coefficient for TAF is assumed to be 10−6 cm2/s
[18, 53]. The concentration profiles for TAF and oxygen are
updated simultaneously according to Eq. (9).

At the beginning of simulation, apart from the grid of
vessels, the box is filled with only normal cells. We
assumed that the normal cells do not proliferate and their
life-time is very long. However, they can die due to necrotic
factors like hypoxia or high local acidity caused by tumor
cells [17]. The growing tumor pushes away the vessels,
opening the gap of poorly oxygenated cells. When hypoxic
region in avascular tumor is sufficiently large to secrete
enough quantity of TAF, the angiogenic phase is initiated
[6, 10, 54].

The newly formed blood vessels become functional
when they form anastomoses allowing for blood flow due
to pressure difference on its ends. Otherwise, we assume
that the functional capillaries without pericyte support
dissolve during 70 h. Moreover, nonfunctional and imma-
ture vessels without blood flow are removed from the
system after 10 h from the moment the VEGF concentration
falls below a given threshold [5, 57]. The values of the
most of parameters are copied from existing computational
models, e.g., [2, 17–19].

The vessel maturation is controlled by the density of
pericytes [5, 15, 22, 23]. The varying degrees of pericyte
recruitment indicate differences in the functional status of
the tumor vasculature. In our simulations we assume a very
simplistic model of vessel maturation. The regression time
depends on the local density of EC tubes. If the density is
too high regression time is shorter. Dll4 regulates the
sprouting rate. The lack of Dll4 results in excessive
sprouting of newly formed vessels. As shown in Table 1,
some simulation parameters such as those defining particle-
particle interactions are specific for our particle model and
cannot be measured experimentally. The others, like
pressure limits and energy dissipation rates were set
heuristically on the base of observation of the model
behavior. The majority of measurable biological parameter
is typical for similar type of computer modeling presented
in [12, 15, 17, 18]. The main parameters are collected in
Table 1.

Modeling of avascular phase of tumor growth

Because the size of thecomputational box is about 1.5–
2 mm, we assume that the diameter of avascular tumor does
not exceed 0.5 mm. It means that the thresholds on vessels
sprouting must be kept on such a level that TAF secretion
from hypoxic part of the tumor is not sufficient to initiate
the process of angiogenesis. The other factor, which
controls the tumor growth rate, is the pressure computed
from Eq. (10). As shown in Figs. 3; 11, the swelling tumor
pushes away the capillaries increasing the space of poorly
oxygenated cells in its interior. The nodule after being
exposed to the critical stress, gradually relaxes its stress
allowing the pathology to continue expanding. At the

Fig. 10 Oxygen penetration depth for mouse according to [56]. The
O2 pressure (pO2) dropped exponentially and reached plateau values
of 3 mm Hg at around 200 μm away from the blood vessel. Assuming
that critical pO2 for healthy tissue is about 8-10 mmHg while about 2-
4 mmHg for tumor cells [51, 54, 56], the average distance to the
hypoxic TCs should be about 150 μm. The red curve is the
exponential fit of experimental data
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Table 1 Main simulation parameters (p.u. – program units)

1. Global physical and numerical parameters

Name Description Values Units

timestep The length of timestep 0.25 h

no_timesteps Typical number of timesteps 104 - 105

box_size The size of computational box 1-2 mm

no_cells Typical total number of cells simulated up to 3×105

diffusion_coef_TAF Diffusion coefficient of TAF 0.002 p.u.*

diffusion_coef_O2 Diffusion coefficient of O2 0.035 p.u.

force_cut_off Cut-off radius in forces calculations 30 μm

2. Biological and local physical parameters

a. Tumor cells

tc_mass Mass of cell 0.5-1 p.u.

tc_diameter Diameter of mature cell 15-30 μm

tc_mitosis_rate Doubling time for tumor 200 h

tc_nutrient_consumption O2 consumption speed in cell 0.12 p.u./h

tc_nutrient_mitosis Minimal concentration of O2 for mitosis 6 mmHg

tc_nutrient_hypoxia Min-Max concentration of O2 in hypoxia 2-5 mmHg

tc_max_hypoxia_time Maximal life time in hypoxia 50 h

tc_grow_speed Cell growth rate 0.2 μm /h

tc_min_mitosis_size Minimal cell size for mitosis 90 %

tc_taf_generation TAF generation rate 0.1 p.u./h

tc_force_in(out) Coefficient of cell-cell interactions 0.001 p.u.

tc_mitosis_pressure_limit Pressure inhibiting cell mitosis 0.3 p.u.

tc_grow_pressure_limit Pressure inhibiting cell growth 0.5 p.u.

tc_shrink_speed Speed of necrotic cell shrinking 10 μm /h

tc_dead_age Maximal time rate of dead cell removal 10 h

tc_dead_reduction Radius reduction rate for dead cell 1 μm /h

b. healthy cells

hc_mass Mass of cell 0.5-1 p.u.

hc_diameter Diameter of cell 15-30 μm

hc_max_live_age Maximal life time of cell 5000 h

hc_nutrient_consumption O2 consumption speed in cell 0.12 p.u.h-1

hc_nutrient_mitosis Minimal concentration of O2 for mitosis 10 mmHg

hc_nutrient_hypoxia Min-Max concentration of O2 in hypoxia 5-7 mmHg

hc_max_hypoxia_time Maximal life time in hypoxia 5 h

hc_force_in(out) Coefficients of cell-cell interactions 0.001 p.u.

hc_shrink_speed Speed of necrotic cell shrinking 10 μm /h

hc_dead_age Maximal time rate of dead cell removal 20 h

hc_dead_reduction Radius reduction rate for dead cell 1 μm /h

c. vessel tubes

vc_mass Mass of EC tube 2.3-5 p.u.

vc_diameter Diameter of EC tube 10-50 μm

vc_ length The length of the EC tube 70-150 μm

vc_tip_mitosis_rate Doubling time for vessel tip tubes 200 h

vc_grow_speed Growth speed 0.2 μm/h

vc_thicken_speed Thickening speed 0.002 μm/h

vc_min_mitosis_size Minimal tube diameter for division 95 %

vc_branch_taf_trigger TAF concentration allowing for sprouting 0.00005 p.u.

vc_force_in(out) Coefficient of tube-tube interactions 0.001 p.u.

vc_glue_force Coefficient of forces gluing tubes in vessels 0.005 p.u.

vc_mitosis_pressure_limit Pressure inhibiting cell mitosis 100 p.u.

vc_grow_pressure_limit Pressure inhibiting cell growth 100 p.u.

vc_max_flowless_time Regression time allowed for non-functional vessels 40 h

* p.u. - program units
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beginning the pressure weakly constrains tumor progres-
sion. However, as displayed in Fig. 12, after an initial
exponential growth phase leading to tumor expansion,
growth saturation is observed even in the presence of a
periodically applied nutrient supply. This observation is in a

good correspondence with experimental results [7]. The
section of the tumor spheroid, shown in Fig. 11, displays a
layered structure. A core zone composed mainly of necrotic
material is surrounded by a thin layer of quiescent tumor
cells and an outer ring of proliferating tumor cells. It is
crucial to understand the processes, which are responsible
for the growth of a layered and saturating tumor.

With increasing size and cell number, the spheroid
requires more oxygen (more energy). Since the nutrient
concentration is the lowest in the center of the avascular
tumor, cells will starve here first, and may eventually die
(necrosis). The cells under necrosis swell and burst,
forming a necrotic site. The necrotic center collects the
necrotic remains, and is much ‘softer’ than living cell layers
[35]. The external pressure stimulates the mixing phenom-
enon similar in spirit to Rayleigh-Taylor instability boosted
additionally by spherical geometry of the particle system
(see [41]).

As shown in Fig. 13, the cells from the outer shell are
pushed toward the necrotic center. Initially, the inward flow
is slow since the necrotic core is not existing or small.
Consequently, the outmoving cell population dominates, i.
e., the tumor expands. Later on, if the necrotic core has
reached a critical size, the inward motion takes over which
limits further tumor growth.

The experimental work by Dorie et al. [58] confirms this
observation. They showed that there are not only cells
moving toward the periphery but also there is a significant
number of proliferative and quiescent tumor cells moving
from the periphery toward the core area. This inward cell

Fig. 12 The plots displaying the number of cells – the total number of
tumor cells, cells in hypoxia, and dead cells - with time for growing
tumor (see Fig. 11) under different external pressure exerted by the
tissue on the tumor mass. The filled symbols correspond to the tumor
dynamics inside the tissue which is 10% softer than while open
symbols

Fig. 11 The snapshots from 3-
D simulation of avascular tumor.
The tumor from B is stable and
its size does not increase any
longer. C and D show the cross-
sections through the tumor from
B. The tumor diameter is about
0.35 mm. The initial distance
between the vessels is 0.15 mm.
Only tumor cells are shown.
Blue particles are well oxygen-
ated cells; green particles repre-
sent hypoxic cells and black
ones the necrotic center. The
tissue cells are invisible and
we assume that they are well
oxygenated
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motion is a necessary condition for growth saturation of
avascular tumor. If there would be no cell flowing toward
the center but only stationary cells and cells moving in the
direction of the outer shell, constant oxygen delivery would
imply unbounded tumor growth.

This “antagonistic growth direction” was explained in
[35] by the chemotaxic migration of tumor cells into the
direction of the maximum necrotic signal gradient. Accord-
ingly, in [35] the authors assumed that a diffusible signal
emitted by bursting tumor cells is attracting living tumor
cells. In our opinion, explanation of the inward cell motion
by chemotaxis directed to the necrotic center is superfluous
in the context of Occam razor principle.

As shown in Fig. 12, higher external pressure produces
tumors of smaller volume. However, this effect is not
spectacular. Considerable increase of the external pressure
(two times) results in rather small (10%–15%) decrease of
tumor volume and causes that also the volume fraction
occupied by quiescent cells decreases (by 20% in Fig. 12).
Most of solid tumors, even small ones 1–3 mm in
diameter, exhibit hypoxic fractions that may range from
10 to 30% [55]. On the other hand, the size of necrotic
center cannot shrink to be too small to stop the inward
motion of cells.

Its size should be adequate to guarantee the stabilization
of the tumor proliferation. We can conclude that high
external pressure can decrease the hypoxic fraction of
avascular tumor below a threshold required to initiate the
angiogenic processes. Such the quiescent tumor can
preserve its size for years until the drop of external

pressure. It can be caused, e.g., by tissue matrix degradation
due to destructive influence of tumor cells (see Fig. 17).

When avascular tumor is getting larger, non-uniform
remodeling of capillaries caused by mechanical forces (see
Fig. 3B and Fig. 14) may result in hypoxia not only in the
central but also in many peripheral parts of the spheroid
(see Fig. 14B). Deployment of additional sources of TAF
can accelerate the process of angiogenesis. The angiogen-
esis in the peripheral part of the tumor is even more
feasible, because of high density of blood vessels on its
border (see Fig. 3 and Fig. 15).

As shown in Fig. 14C, the process of angiogenesis
eliminates the hypoxic spots. All the tumor cells are almost
uniformly oxygenated. The angiogenic phase stops. In the
following section we show how the process of vasculari-
zation changes the way of tumor proliferation.

Modeling of tumor vascularization and remodeling

Because of high computational load required for 3-D
simulations we assumed that angiogenesis initiates in a
very early stage of tumor growth (its diameter is about
100 μm instead of a more realistic 1 mm). This assumption
does not change too much the scenario of tumor progres-
sion at the start of vascularization process. As shown in
Fig. 16, increasing vascularization leads to increasing
acceleration growth rate. The tumor evolution starts from
power law type of growth. The power order jumps when
avascular phase is replaced by angiogenic phase of tumor
growth. At this stage however, we cannot estimate which

Fig. 13 The snapshots from
similar simulation as shown in
Fig. 11. The figures illustrate the
inward motion of tumor cells
from the tumor surface to its
necrotic interior. The three
arrows of various colors show
the cells which disappear, one
by one, in the necrotic tumor
center
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kind of growth is expected for a larger tumor. Because of
limited size of computational box, the growth is restrained
due to increasing pressure.

The tumor evolution in bone cavity is illustrated in
Fig. 17. During unrestricted growth (no pressure exerted
from healthy tissue) avascular tumor expands fast along the
capillary (Fig. 17B). In angiogenic phase, tumor cells fill
the whole cavity to the moment when external pressure is
higher than the internal pressure. Stimulation of bone lysis
by tumor cells allows for local destruction of the porous
bone structure. The existing and newly formed blood
vessels position themselves within bone matrix niches,

helped by high pressure exerted by the tumor on the bone
walls (see Fig. 17).

In vascular phase the growing tumor produces its own
vascular network with a specific microvascular density
(MVD). MVD is used as an important diagnostic tool in
cancer therapy [5]. However, MVD is not uniform in tumors.
Therefore, a quantitative understanding of the mechanism that
causes compartmentalization of the tumor vasculature is
critical for more accurate assessment of influence of vascular
growth stimulators on tumor proliferation. The mechanism
leading to excessive vascularization on the peripheral of the
tumor was explained in the previous section (see Figs. 3, 15).

Fig. 14 The cross-sections of avascular tumors (A, B) and tumor with
vascularization (C). The tumor diameters are about 0.45 mm (A) and
0.55 mm (B, C). Unlike the tumor from A, the tumor from B has a

few necrotic centers. The tissue cells are invisible and only tumor cells
are shown. Blue particles represent well oxygenated cells while green
and black cells are hypoxic and necrotic, respectively

Fig. 15 The histogram of vas-
cularization around the pre-
angiogenic tumor. Blue bars
show the microvascular density
in the absence of tumor
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We showed that a high fraction of vessels close to the tumor
shell come from normal tissue. These vessels are dense
enough to stabilize neovasculature.

The vasculature of tumor interior is in many respects
different from the regular vasculature in normal tissues.
Tumor vessels are less stable than their normal counterparts
and when engulfed by the growing cancerous tissue they
undergo processes of regression. As a consequence, newly

formed immature vessels fail functionally. Arrested blood
flow in deficient blood vessels within tumor interior causes
their collapse. This stimulates both the growth of new
vessels in this place and increases the blood pressure in
other immature vessels. The regression-growth processes
repeat all over again. As shown in [18, 19], this process is
driven toward criticality - the percolation threshold - via a
mechanism of vessel stabilization by increase of blood flow
in the remaining vessels.

The functional status of the neovasculature depends on
many factors. The most unstable are open vessels without
blood flowing that dissolve quickly. Only vessels creating
anastomozes and pass up blood have a chance to survive.
Nevertheless, inhibition of VEGF, e.g., in cocultures, lead
to a 75% increase in EC apoptosis [22] which cases vessel
regression and blood leaks. All of these factors cause that in
most cases the MVD decreases in direction from periphery
to the tumor interior [2, 5, 18].

As shown in Fig. 18 which presents the snapshots from
2-D simulation of tumor growth in well oxygenated normal
tissue, our particle model reproduces well this highly
inhomogeneous tumor specific capillary network. The
resulting network is very heterogeneous, composed of
dense and void regions, and has distinctly different
structure from normal arteriovenous or normal capillary
networks [2]. Moreover, the emerging tumor morphology is
characterized by the compartmentalization of the tumor into
several regions differing in vessel density, and extent of
hypoxia [5]. This situation is clearly displayed in Fig. 18.

Fig. 16 The acceleration of tumor progression due to angiogenesis
assuming two VEGF thresholds

Fig. 17 The cross-section of 3-
D tumor evolution in a bone
cavity. The white motionless
cells represent the bone. The
tumor fills the cavity exerting
pressure on the bone walls

1534 J Mol Model (2009) 15:1517–1539



In our model we consider two corresponding factors
regulating vessels stability. First, we can mimic the activation
(inhibition) of delta-like 4 (Dll4)-Notch1 signaling [13, 14]. It
regulates the formation of appropriate numbers of tip cells to
control vessel sprouting and branching. Inhibition of Notch
signaling promotes increased number of tip cells. Conversely,
activation of Notch leads to fewer tip cells and vessel
branches. Pericytes are the second factor which regulate
vessel stability [15, 22, 23]. Pericytes secrete an inhibitor that
controls endothelial growth at certain cell densities. The
varying degrees of pericyte recruitment indicate differences in
the functional status of the tumor vasculature and may reflect
varying degrees of maturation of the tumor vascular bed.

Inhibition of Dll4, resulting in excessive sprouting,
branching and formation of immature vessels without blood

flow, causes that pericytes concentration becomes too low
and vessels not supported by pericytes undergo regression.
Otherwise, for high activation of Dll4, as in the situation
shown in Fig. 19, pericyte covered vessels stabilize and
become functional. The maturation of vessels due to
pericytes for high activation of (Dll4)-Notch1 signaling
were simulated using our 2-D particle model. The snap-
shots from this simulation are presented in Fig. 20.

Concluding remarks

The concept of complex automata and interacting particles
represent a novel framework for constructing multi-scale
models of tumor progression. We show that this approach is

Fig. 18 The snapshots from 2-
D simulation of vascularized
tumor evolution. The gray cells
correspond to normal (healthy)
tissue while colored cells repre-
sent tumor. The color denotes
the extent of cells oxygenation
(from blue - highly oxygenated
cells, to green – cells in hypox-
ia). The arrows shows the
tissue cells absorbed inside the
tumor mass due to mechanical
remodeling

Fig. 19 The snapshot from 2-D model of angiogenesis, showing pericyte uptake by growing vessels
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competitive both to existing paradigms based on continuum
models and classical cellular automata. The possibility of
tumor dynamics simulation, which enables mechanical
remodeling of the blood vessel system, is the greatest
advantage of our model. Moreover, realistic 3-D dynamics
of the entire system consisting of the tumor and other tissue
cells, blood vessels and blood flow can be reproduced by
using the same homogeneous particle model.

Our simulation results indicated that not only redistribu-
tion and uptake of angiogenic factors during angiogenesis
had significant effects on the structure and functionality of
vascular networks. The results of mechanical remodeling
can suggest as follows.

1. The layered structure of tumor can be explained solely
by the self-organized growth of an initially small
number of tumor cells.

2. The inward motion of peripheral tumor cells to its
necrotic interior can be explained on purely mechanical
ground, without somewhat suspicious necrotic chemo-
taxis suggested in [35].

3. Larger value of MVD on the tumor peripheral is
initiated due to mechanical interaction of expanding
tumor borders on existing vasculature.

4. External pressure decelerates tumor proliferation. It
evolves to a quiescent state.

5. Our modeling results support controversy to Folkman’s
optimistic declaration that disruption of angiogenesis
yields a starving tumor, which eventually dies. As show

the results produced by our model, due to mechanical
remodeling of healthy tissue, many disparate fragments
of tumor become very well oxygenated. Expanding
tumor can push out healthy cells and use regular
vasculature to support its growth without the need of
excessive angiogenesis.

6. The functionality of neovasculature depends on the
balance between pericyte and Dll4 concentrations.

To check if the vascular networks generated in numerical
simulations are really similar to the realistic ones we plan to
validate our model. This validation will be conducted on
the basis of the comparison between realistic images of
tumor vascular networks from confocal microscopy and
computer experiments. The comparisons will be made
employing structural properties of tumor vascularization.
The vascular networks can be described by the feature
vectors with statistical and/or algebraic descriptors of
complex networks [59] as the feature vector components.
Finally, pattern recognition methods such as clustering and
feature extraction will be used for the vector classification.

The computational complexity and modeling constraints
are the main disadvantages of our model. The first problem
results from shortcomings we used in our simulations. We
applied our particle model to a more developed stage of
tumor growth, where the tumor is likely to comprise
millions of cells rather than thousands of cells. To solve
this problem we need to define a multi-scale model and
resort to parallel computing techniques. Although this

Fig. 20 The snapshots of 2-D
simulation of vascularization in
tumor. The green vessels repre-
sent mature, pericyte covered
vessels
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certainly implies some degree of complication from the
computational point of view, the particle model is not too
difficult to implement in parallel [43, 49, 60]. The most
serious modeling constraints and simplifications used in our
model are as follows:

1. Due to limited size of computational box and growing
number of cells the pressure in the box increases.
Computationally expensive procedures have to be used
to maintain constant pressure inside the box.

2. The cells interaction is radial, which suggests that
they are of spherical shape. Implementation of more
realistic anisotropic interactions is very demanding
computationally.

3. We use for simplicity rigid EC-tubes instead of EC
cells, which influences the shape of vessels and may
introduce structural artifacts.

Our model of tumor-induced angiogenesis addresses a
limited number of biological processes. For example, blood
hydrodynamics have received much less attention than in
other models (e.g., in [3, 4, 17, 18, 29]). We did this
intentionally to reduce the computational load. However,
we definitely agree that in larger tumors, vascular remodel-
ing due to blood circulation cannot be neglected. The
existing flow models (e.g., as in [17, 18]) can be easily
adapted in the scope of our particle model. For simplicity,
we neglect also other phenomena. In particular, our model
has not addressed the effect of perfusion and different
concentration of oxygen along the vessel. Moreover, we
consider only oxygen as the nutrient while tumor cells often
do not require much oxygen for growth, but glucose, fat,
and amino acids. Another area in which our model could be
improved is introduction of microscopic sub-models repre-
senting important intra cellular phenomena such as cell
proliferation in hypoxic conditions. This challenge, how-
ever, can be undertaken provided that the efficient parallel
version of the model will be implemented.

In our CxA framework it is easy both to develop
principal mechanisms of tumor dynamics such as cell
proliferation, vascularization, vessels remodeling and in-
corporate sub-models of other important processes such as
microscopic intracellular phenomena, blood circulation, and
extracellular matrix models. The particle model can be
supplemented by more precise models of reproduction
mechanism, cell-life cycle, lumen growth dynamics, hapto-
taxis mechanism and others. Some models of intracellular
phenomena can be copied directly from the work of
Alancorn et al. [17]. Moreover, more angiogenic factors
can be considered, such as various TAF activators and
inhibitors. Instead of a simplistic model of blood circula-
tion, advanced blood flow algorithms from Chaplain [12]
and Stephanou et al., [4, 29] can be implemented in a
straightforward way.

For simplicity, our model does not reflect the influence
of the extracellular matrix composition on endothelial cell
migration and network formation [15]. These very impor-
tant processes can be simulated easily employing more
complicated (e.g., anisotropic) interaction forces between
cells. One can assume, for example, that the particle
represent the cell with a fragment of extracellular matrix.
We can then use interaction forces depending on both the
range and the angle of interactions. A more realistic though
more computationally demanding way for simulating
processes occurring in ECM involves additional type of
particles representing various ECM components.

Most of these possible improvements will require
supercomputing power to simulate realistic tumor sizes.
This is mainly due to the assumption we made that one
particle corresponds to a single cell. This puts the upper
limit on the size of simulated 3-D system to a few
millimeters or at most centimeters when employing
nowadays high performance multiprocessor systems. How-
ever, as shown in [42, 43, 49], particle models can be used
for simulating fluid flows in various spatio-temporal scales
by using a coarse graining procedure. We postulate that a
similar procedure can be defined for modeling the tissue.
Depending on the spatio-temporal scale of simulation, the
particle can represent a cell, a cell with a fragment of ECM
matrix, cluster of cells and fragments of ECM matrix, or a
cloud made of mixture of cells, fragments of ECM matrix
and microscopic blood capillaries. If such scalability of the
particle model is possible, this would allow for simulating
tumors in various spatio-temporal scales from small
avascular clusters to large masses.

In summary, we showed that the CxA particle model
developed in this study can be used as a robust modeling
framework for developing more advanced tumor growth
models. Consequently, these models can be used to
evaluate the effects of various types of therapies on tumor
dynamics, understanding interactions between various
growth factors, and to generate experimentally testable
hypotheses.
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